摘要:針對(duì)目前動(dòng)力電池管理系統(tǒng)功耗大、使用不靈活等缺陷,設(shè)計(jì)一種基于單片機(jī)CC430F5137的動(dòng)力電池管理系統(tǒng)。分析了動(dòng)力電池管理系統(tǒng)的結(jié)構(gòu)原理,給出了硬件設(shè)計(jì)方法和軟件流程,并詳細(xì)分析了電壓/電流檢測(cè)模塊、剩余電量檢測(cè)模塊、溫度檢測(cè)模塊和數(shù)據(jù)傳輸模塊。實(shí)驗(yàn)結(jié)果驗(yàn)證了采用單片機(jī)CC430F15137設(shè)計(jì)動(dòng)力電池管理系統(tǒng)的可行性,系統(tǒng)運(yùn)行穩(wěn)定可靠,有較好的應(yīng)用前景。
一體成型電感
關(guān)鍵詞:動(dòng)力電池管理系統(tǒng);CC430F5137;SoC;RF無(wú)線通信
引言
磁環(huán)電感器隨著新能源汽車的不斷發(fā)展,大型工廠開(kāi)始逐步使用動(dòng)力電池驅(qū)動(dòng)的運(yùn)輸車輛。電動(dòng)汽車目前常用的電池有鉛酸電池、鋰電池、鎳氫電池等。電池是一個(gè)集成高能量的物體,它的使用以及安全管理就顯得尤為重要。目前的電動(dòng)汽車中缺少能夠?qū)崟r(shí)、直觀、在線地反映蓄電池狀況的設(shè)備,由于對(duì)蓄電池保養(yǎng)不及時(shí)、保管不善、放電過(guò)度而造成的早期損壞,給企業(yè)帶來(lái)一定的損失。電池管理系統(tǒng)能解決這一問(wèn)題,因此研究一套能夠?qū)崟r(shí)監(jiān)測(cè)蓄電池工作狀況的系統(tǒng)有著十分重要的價(jià)值和意義。
參考文獻(xiàn)設(shè)計(jì)出的蓄電池管理系統(tǒng)缺少數(shù)據(jù)的傳輸功能,使得應(yīng)用有一定的局限性。參考文獻(xiàn)設(shè)計(jì)的電池管理系統(tǒng)是以DSP為控制核心,其成本較高,而且系統(tǒng)運(yùn)行的功耗也較高,有較大的局限性。
針對(duì)以上缺點(diǎn),現(xiàn)采用基于單片機(jī)CC430F5137為控制核心的設(shè)計(jì)方案。CC430F5137內(nèi)部集成了CC1101無(wú)線電收發(fā)器,可以實(shí)現(xiàn)100~200 m的無(wú)線傳輸功能,而且CCA30F5137具有MSP430系列單片機(jī)的低功耗特性。以上優(yōu)點(diǎn)彌補(bǔ)了目前電池管理系統(tǒng)的缺陷,達(dá)到了目前應(yīng)用的要求。
1 電池管理系統(tǒng)運(yùn)行原理
本系統(tǒng)安裝在電動(dòng)汽車中,可以實(shí)時(shí)監(jiān)視電池的狀況。當(dāng)電池汽車充電時(shí),系統(tǒng)可以將充電數(shù)據(jù)通過(guò)無(wú)線模塊傳輸給充電中心,并自動(dòng)進(jìn)行充放電管理。這樣充電中心就可以實(shí)時(shí)了解充電的狀態(tài),而且充電中心不用將其他線路接入汽車內(nèi),減少了搭建線路的麻煩,提高了工作效率;當(dāng)汽車在正常使用電池時(shí),系統(tǒng)會(huì)實(shí)時(shí)監(jiān)測(cè)電池的用電情況,在剩余電量不足時(shí)及時(shí)通知駕駛?cè)藛T,并將警報(bào)通過(guò)無(wú)線模塊發(fā)送給充電中心,告知需要充電。
電池管理系統(tǒng)結(jié)構(gòu)框圖如圖1所示。本系統(tǒng)以CC430F5137為控制核心;蓄電池充放電控制電路主要是對(duì)蓄電池的充放電進(jìn)行管理,大功率蓄電池充放電電流較大,需要充放電控制電路對(duì)電池進(jìn)行保護(hù)充放電,以免損壞電池;蓄電池檢測(cè)電路主要是檢測(cè)電池的充放電電壓、充放電電流和電池溫度等;LCD顯示電路用于顯示電池電壓、溫度、電量等參數(shù),以給使用人員提供一個(gè)參考;CC1101無(wú)線電模塊用于將采集的電池?cái)?shù)據(jù)通過(guò)無(wú)線電發(fā)送給充電中心,以便充電中心進(jìn)行實(shí)時(shí)管理。
2 蓄電池管理系統(tǒng)硬件設(shè)計(jì)
蓄電池管理系統(tǒng)包括電流檢測(cè)模塊、電壓檢測(cè)模塊、溫度檢測(cè)模塊和數(shù)據(jù)傳輸模塊。
2.1 電流、電壓檢測(cè)模塊設(shè)計(jì)
在本系統(tǒng)中,單片機(jī)需要對(duì)蓄電池組的整體電壓和單節(jié)電池電壓進(jìn)行檢測(cè)。目前有兩種檢測(cè)方法:一種是采用霍爾電壓傳感器來(lái)轉(zhuǎn)換被測(cè)電壓,再通過(guò)A/D轉(zhuǎn)換元件進(jìn)行采樣;另一種是采用精密電阻構(gòu)建電阻分壓電路,再用A/D轉(zhuǎn)換元件進(jìn)行采樣。第二種方法對(duì)于電壓范圍較固定的條件下比較適合,如果有大電壓或者電壓范圍較大的情況下,采用第一種方法比較適合。本系統(tǒng)采用第一種檢測(cè)方法。
2.1.1 模擬采樣芯差模電感器片的選擇
本系統(tǒng)選用AD7656模數(shù)轉(zhuǎn)換芯片來(lái)采集模擬信號(hào)。AD7656是利用創(chuàng)新的半導(dǎo)體制造工藝(iCMOS)制作的高集成度、6通道同時(shí)采樣的16位逐次逼近型的ADC。其吞吐率高達(dá)250 ksps,可以6通道同時(shí)采樣;支持并行、串行和菊花鏈的接口模式;可以與處理器的SPI、QSPI等高速串口實(shí)現(xiàn)無(wú)縫連接;寬帶寬輸入,輸入頻率為50 kHz時(shí)的信噪比(SNR)為86.5 dB;在供電電壓為5 V、采樣速率為250 ksps時(shí),功耗為140mW。如圖2所示,AD7656有兩個(gè)電源輸入端,分別為模擬電壓輸入端AVCC和數(shù)字電壓輸入端DVCC。在AD7656同時(shí)轉(zhuǎn)換6通道數(shù)據(jù)時(shí),需要一個(gè)標(biāo)準(zhǔn)的輸入電源,以便達(dá)到高精度的要貼片電感求,所以AVCC的去耦就顯得十分重要。在本系統(tǒng)中的供電電源的輸出端加一磁珠,以便提供較好的電源。在電路的接地設(shè)計(jì)中,AD7656的DGND與AGND需要相互分 大功率電感廠家 |大電流電感工廠