最大可允許的6V柵極電壓僅比推薦的5V驅(qū)動(dòng)電壓高1V。這個(gè)限制要求精確的柵極驅(qū)動(dòng)電源以及eGaN器件和柵極驅(qū)動(dòng)器之間的有限功率電感,因?yàn)殡姼袝?huì)造成柵極上出現(xiàn)電壓過沖。雖然一些過沖是可以接受的,但也可以完全避免,只要柵極電感滿足以下等式:
功率電感器生產(chǎn)廠
其中:
RSource = 柵極驅(qū)動(dòng)器上的源電阻
LG = 柵極驅(qū)動(dòng)器與eGaN器件之間的環(huán)路電感
這樣,對(duì)于給定的柵極環(huán)路電感,一定有一個(gè)最小的源電阻值,用以防止VGS超過其最大限值。
由于宜普(EPC)器件采用芯片級(jí)封裝,其封裝電感是微不足道的,所以我們可以把共源電感問題當(dāng)作布局問題,而非柵極驅(qū)動(dòng)器要求。然而,這些因素相互牽扯在一起,無法形成一個(gè)清晰的區(qū)分。
CSI的加入將在di/dt期間在CSI上產(chǎn)生一個(gè)與柵極驅(qū)動(dòng)電壓相反的電壓,從而降低效率,增加導(dǎo)通和關(guān)斷時(shí)間。因此,為了獲得最優(yōu)異的開關(guān)性能,關(guān)鍵就是最小化共源電感。乍看起來矛盾的是,如果我們接受CSI會(huì)導(dǎo)致增加開關(guān)損耗的代價(jià),增加CSI將降低米勒導(dǎo)通的可能性。這是因?yàn)樵诨パa(bǔ)器件的“一體成型電感工廠硬”導(dǎo)通時(shí),CSI上的電流一體成型電感交換di/dt將導(dǎo)致柵極上出現(xiàn)負(fù)電壓,從而在部分電壓轉(zhuǎn)換期間有助于器件保持關(guān)斷狀態(tài)。
這里沒有說明的是,CSI、柵極電容和柵極驅(qū)動(dòng)下拉環(huán)路現(xiàn)在形成了一個(gè)LCR諧振電路,需要加以抑制以避免在柵極上出現(xiàn)等效的正電壓振鈴。這種振鈴可能在接近末端甚至在電壓轉(zhuǎn)換完成后再次使器件導(dǎo)通。雖然增加?xùn)艠O驅(qū)動(dòng)吸收電阻有助于抑制這種LCR諧振,代價(jià)是增加了米勒導(dǎo)通敏感度,如果加入于諧振頻率點(diǎn)具有電阻特性(損耗)的鐵氧體磁珠,我們可以取得相同效果,其米勒導(dǎo)通敏感度也不會(huì)增加那么多。請(qǐng)參考圖5的等效電路和圖6所示的概念性開關(guān)波形。這種效應(yīng)有時(shí)很難與dV/dt導(dǎo)致的米勒導(dǎo)通區(qū)分??偠灾?,CSI對(duì)于eGaN FET的重要性要比對(duì)于硅器件的重要性高得多,因?yàn)槠渚哂懈叩膁i/dt和dV/dt,應(yīng)該通過仔細(xì)的布局設(shè)計(jì),把它們減小到最低限度。